
Suggested line of text (optional):

WE START WITH YES.

Suggested line of text (optional):

WE START WITH YES.

HPC FRIENDLY DATA
MODEL

AMIT BASHYAL
On behalf of HEP-CCE IO/S
Argonne National Lab
Postdoctoral Research Fellow

AHM Meeting
Lawrence Berkeley National Lab

October 12, 2022

INTRODUCTION
▪ 2 aspects of the HPC friendly data model
– Direct coupling of the [e.g. DUNE] data format with the HDF5
– Efficient offloading for the GPU processing.
– Link to the github repository.

▪ Using ProtoDUNE Raw Data for the test
– DUNE being the future experiment, our experience will benefit the

experiment.
– Already using HDF5 to store their raw data and MC

• Simple data model (easier to test)
– Link to the (Proto)DUNE CDR.

2

https://github.com/physnerds/gpu-data-models.git
https://arxiv.org/pdf/1706.07081.pdf

Proto-DUNE

3

Beam
Direction

● ProtoDUNE LAr TPC currently operating at
CERN

● Incorporates the full-size components
designed for the DUNE Far Detector

● Aims to validate the detector and
computational technologies for the DUNE
Far Detector

● Quantify and reduce systematic
uncertainties for the DUNE Far Detector by
optimizing event reconstruction and PID
technologies

● Detector being characterized with incident
beam of known momenta and PID

● 2 APA (Anode Plane Assemblies) arrays
○ Each array has 3 APAs adjacent to

one another.
○ Each APA has 2560 signal channels.

● More info on Proto-DUNE (Link)
● Second iteration of this detector has one

additional APA array

https://arxiv.org/pdf/1706.07081.pdf

Raw Data of Proto DUNE
The Proto DUNE DAQ (Raw) Data is stored in the HDF5 Format.
▪ For a given APA, each of 2560 channel readings are stored in individual

data-sets (HDF5::DataSet).
▪ All of 2560 channel readings of a given APA are grouped together

(HDF5::Group).
▪ For each channel reading data-set, a header file is written

– Channel Number
– Number of ADCs
– Compression Status
– ….And so on…

4

Data Structure of ProtoDUNE Raw MC

5

File (H5::File)

APA01 (H5::Group) APA02 (H5::Group)

ch 1 header

ch 1 data

ch 2 header

ch 12 data

ch 2500
header

ch 2560 data

ch 2500
header

ch 2560 data

..

..

..

..

ch 1 header

ch 1 data

ch 2 header

ch 12data

ch 2500
header

ch 2560 data

ch 2500
header

ch 2560 data

..

..

..

..

RAW (Header) Data of ProtoDUNE

6

 GROUP "APA01" {
 DATASET "ChannelHeader_2500" {
 DATATYPE H5T_COMPOUND {
 H5T_STD_I32LE "Chan";
 H5T_IEEE_F32LE "Pedestal";
 H5T_IEEE_F32LE "Sigma";
 H5T_STD_I32LE "nADC";
 H5T_STD_I32LE "Compression";
 }
 DATASPACE SIMPLE { (1) / (1) }
 DATA {
 (0): {
 2500,
 2305,
 8.32,
 60,
 0
 }
 }
 }

 GROUP "TriggerRecord00028" {
 GROUP "TPC" {
 GROUP "APA000" {
 DATASET "Link00" {
 DATATYPE H5T_STD_I8LE
 DATASPACE SIMPLE {}
 }
 DATASET "Link01" {
 DATATYPE H5T_STD_I8LE
 DATASPACE SIMPLE {}
 }
 }

DATASET "TriggerRecordHeader" {
 DATATYPE H5T_STD_I8LE
 DATASPACE SIMPLE {}
 }
 }

Data is the DAQ data copies of the
fragments named as Linkxx.
Grouped for each APA

Data is reorganized to enable readout of
whole channel during offline processing

MC is simulated as a single channel
readout.
Header is H5T_Compound type.
Channel readout is uint32_t type.

Raw MC of Proto DUNE
Content of HDF5 File

7

Channel Header

Corresponding
Channel Data

60 ADC readings only for
illustration purpose

Simulation of ProtoDUNE Raw MC
▪ Fake simulation using toy MC.

– HDF5 parameters available to optimize the I/O
– Can affect the I/O time and file size

8

Chunk-Size Write Time
(seconds)

Read Time
(seconds)

Size (MB)

6 36.35 25.81 317

60 6.17 2.70 153

600 3.34 0.60 133

6000 3.16 0.44 133

Table: 2 APAs (2560 channels each) with each channel writing ~6000 ADCs
(unsigned integer 32 bits)
Basically for 6000 readouts, no chunking required.

Offloading Data into GPU/CPU
▪ Portable code that supports heterogeneous resources

– Same function/task can be handled by both CPU and GPU
▪ Relies on CUDA, C++ libraries, tbb
▪ Offloading structure based on Athena::ATHCUDA

– Written by Attila Krasznahorkay (Link to repository)
▪ Tests being done in the CORI machine.

– CORI is scheduled to shut down by the end of this year
– Will move the code development to Perlmutter

9

https://gitlab.cern.ch/akraszna/asyncgaudi.git

Data Models offloadable to the GPUs
▪ 1 D cpp vectors 2 D vectors

10

1 D Vector (custom container)

Array for GPU task Array for CPU task

2 D Vector (custom container)

{ list of 1D Vectors}

{ array of 1D arrays}

Data models currently supported

11

my1Darray* = {x,y,z......};

my2Darray** = {1Darray1*,1Darray2*,1Darray3*,......};

class test{

public:

 HOST_AND_DEVICE

 void operator()(uint32_t* a,uint32_t* out, int

arr_size){

 for(int i = 0;i<arr_size;i++)

 out[i] = a[i]*2.0;

 }

}; //1D Example

class test{

 public:

 HOST_AND_DEVICE

 void operator()(uint32_t** a, uint32_t**

out, int arr_size){

 for(int i=0;i<2;i++){

 for(int j=0;i<arr_size;j++) out[i][j] =

a[i][j]*2.0;

 }

 }

};

 //2D Example

Data models currently Supported

12

 4 Vector {px,py,pz,E}

struct FourVector{

 double px, py,pz,E;

 int _index;

}

CustomContainer<FourVector>(FV1,FV2,FV3,FV4..)

DeviceArray<FourVector> HostArray<FourVector>

Execution Style

13

Data

CPU GPU

Based on tbb::task_arena to
allow multi threading Based on CUDA

task 1
task2
task3
…..
….
task n

stream 1
stream 2
stream 3
…
..
stream k

Same code can be used to
offload task into both GPU and
CPU.

Work in
Progress*

Output

14

Data

CPU GPU

Based on tbb::task_arena to
allow multi threading Based on CUDA

task 1
task2
task3
…..
….
task n

stream 1
stream 2
stream 3
…
..
stream k

Output

Work Allocation in the Kernel

15

Block 0 Block 1 Block 2 Block
1024

Block 0 Block 1 Block 2 Block
1024

Block 0 Block 1 Block 2 Block
1024

Grid 0

Grid 1

Grid x

● Number of Grids and blocks per grid is calculated internally.
● Threading is set at Maximum threading per Block

○ Or number of iterations per block (if iteration number less than
max threads)

Tests
▪ Performance verified by using “nvprof”

▪ 1 D array tests (Reading 2500 channels from ProtoDUNE Raw MC)
– Host to Device Throughput ~5.3 GB/s
– Device to Host Throughput ~ 3.88 GB/s

▪ 2 D array tests (work in progress)
– Host to Device Throughput ~20.914 MB/s
– Device to Host Throughput ~26.491 MB/s
– Currently working on Improvements and proper implementation.

16

Future Works
▪ Further Work on 2D arrays needed
▪ Collective I/O Implementation

– For HDF5 related I/O only
▪ Effect of precision on performance
▪ More customized data models that are closer to HEP data models currently

used.
– Build on the top of 1D and 2D arrays that the framework currently

supports.
▪ Ideally would like to minimize (or remove at all) any CUDA API calls when

needed.
▪ AOB

17

Suggested line of text (optional):

WE START WITH YES.

Suggested line of text (optional):

WE START WITH YES.

BACK UP

Additional Info:
▪ DUNE has workflow that uses GPU as server.

▪ Could the data they are offloading can be restructured
▪ Latency for communication between D to H and vice versa.
▪ Do tests that are realistic (to get approximate time fraction spent

executing tasks, copying data between host and device and so on).

19

